If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-10t-96=0
a = 1; b = -10; c = -96;
Δ = b2-4ac
Δ = -102-4·1·(-96)
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-22}{2*1}=\frac{-12}{2} =-6 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+22}{2*1}=\frac{32}{2} =16 $
| t^2-12t-96=0 | | 4+7(x+3)=9 | | 2x+6=38-x | | w-1/3=4/5 | | X+.06x=290 | | 28=7/9y | | 2x+3=13,515.5 | | 10y-25=0 | | 2x+3=27,030 | | 2x+3=13,518.5 | | 2x+3=27,034 | | 2x+1=27,032 | | 6=2/7u | | 4x—10=-3 | | 6x-38=8(4x+4)+8 | | 6x=5-9× | | 4-(5x-3)+2x=12 | | 25=1/3(12.56h) | | 6x+8=43-x | | 32=4w+12 | | 3x6=5(6+3)–3 | | 3x^2+87=15 | | 2(v-1)+8=6(2v-4 | | 10y-3/5=6 | | -9.3=w/7+8.2 | | 3/2(x+60)=180 | | 8=p+3 | | (2x−4)÷5=x+4 | | 12-u=209 | | (0.5)^t/1.2=10 | | 2=5(y+4)-7y | | 0.5^t/1.2=10 |